SS 2016

Differential Geometry

Homework 5

Mandatory Exercise 1. (10 points)

Consider the following differential forms on \mathbb{R}^3 .

$$\begin{split} \omega_1 &:= (x^2 - yz) \, dx + (y^2 - xz) \, dy - xy \, dz \\ \omega_2 &:= \omega_1 + 2xy \, dz \\ \omega_3 &:= 2xz \, dy \wedge dz + dz \wedge dx - (z^2 + e^x) \, dx \wedge dy \end{split}$$

A differential form ω is called **closed** if $d\omega = 0$ and **exact** if there exists a differential form η with $d\eta = \omega$. Which of these forms are closed, which are exact?

Mandatory Exercise 2. (10 points)

Let ω , ω_1 and ω_2 be k-forms on a smooth manifold M. Show that:

- (a) $d(\omega_1 + \omega_2) = d\omega_1 + d\omega_2$.
- (b) If $f: N \to M$ is a smooth map, then $d(f^*\omega) = f^*d\omega$.

Suggested Exercise 1. (0 points)

Given a k-form ω on a smooth manifold M. We can define its exterior derivative $d\omega$ without using local coordinates: given k + 1 vector fields X_1, \ldots, X_{k+1} on M, define

$$d\omega(X_1, \dots, X_{k+1}) := \sum_{i=1}^{k+1} (-1)^{i-1} X_i \cdot \omega(X_1, \dots, \hat{X}_i, \dots, X_{k+1}) + \sum_{i < j} (-1)^{i+j} \omega([X_i, X_j], X_1, \dots, \hat{X}_i, \dots, \hat{X}_j, \dots, X_{k+1})$$

- (a) Show that $d\omega$ is in fact a k+1 form.
- (b) Show that the above definition of $d\omega$ coincides with the definition from the lecture.

Suggested Exercise 2. (0 points)

(a) Consider the 1-form $\alpha := f^1 dx + f^2 dy + f^3 dz$ on \mathbb{R}^3 . Show that

$$d\alpha = g^1 \, dy \wedge dz + g^2 \, dz \wedge dx + g^3 \, dx \wedge dy$$

where $(g^1, g^2, g^3) = \operatorname{curl}(f^1, f^2, f^3).$

(b) Consider the 2-form $\omega = f^1 dy \wedge dz + f^2 dz \wedge dx + f^3 dx \wedge dy$, on \mathbb{R}^3 . Show that

$$d\omega = \operatorname{div}(f^1, f^2, f^3) \, dx \wedge dy \wedge dz.$$

Suggested Exercise 3. (0 points)

Let $\omega \in \Omega^1(S^2)$ be a differential 1-form such that for any $\phi \in SO(3)$ it holds that $\phi^* \omega = \omega$. Show that $\omega = 0$. Hint: Take a point $p \in S^2$ and look only at those $\phi \in SO(3)$ which fix p, and at the equation $(\phi^* \omega)_p = \omega_p$. How does $d\phi_p$ act on the tangent space $T_p S^2$?

Suggested Exercise 4. (0 points)

Let V be a vector space. The unique possible contraction on $V \otimes V^*$ is $c_{1,1} \colon V \otimes V^* \to \mathbb{R}$. Show that $c_{1,1}$ is the trace when one views $V \otimes V^*$ as Lin(V, V).

Suggested Exercise 5. (0 points)

Let $f: M \to N$ be a smooth map and α and β be forms on N.

- (a) $f^*(\alpha + \beta) = f^*\alpha + f^*\beta$.
- (b) $f^*(\alpha \wedge \beta) = (f^*\alpha) \wedge (f^*\beta)$. Note that viewing smooth functions as 0-forms the above formula gives $f^*(g\alpha) = (g \circ f)f^*\alpha = (f^*g)(f^*\alpha)$ for any smooth function $g \colon N \to \mathbb{R}$.
- (c) $g^*(f^*\alpha) = (f \circ g)^*\alpha$ for any smooth map $g \colon P \to M$.

Hand in: Monday 23th May in the exercise session in Seminar room 2, MI