Differential Geometry

Homework 5

Mandatory Exercise 1. (10 points)
Consider the following differential forms on \mathbb{R}^{3}.

$$
\begin{aligned}
& \omega_{1}:=\left(x^{2}-y z\right) d x+\left(y^{2}-x z\right) d y-x y d z \\
& \omega_{2}:=\omega_{1}+2 x y d z \\
& \omega_{3}:=2 x z d y \wedge d z+d z \wedge d x-\left(z^{2}+e^{x}\right) d x \wedge d y
\end{aligned}
$$

A differential form ω is called closed if $d \omega=0$ and exact if there exists a differential form η with $d \eta=\omega$. Which of these forms are closed, which are exact?

Mandatory Exercise 2. (10 points)
Let ω, ω_{1} and ω_{2} be k-forms on a smooth manifold M. Show that:
(a) $d\left(\omega_{1}+\omega_{2}\right)=d \omega_{1}+d \omega_{2}$.
(b) If $f: N \rightarrow M$ is a smooth map, then $d\left(f^{*} \omega\right)=f^{*} d \omega$.

Suggested Exercise 1. (0 points)
Given a k-form ω on a smooth manifold M. We can define its exterior derivative $d \omega$ without using local coordinates: given $k+1$ vector fields X_{1}, \ldots, X_{k+1} on M, define

$$
\begin{aligned}
d \omega\left(X_{1}, \ldots, X_{k+1}\right):= & \sum_{i=1}^{k+1}(-1)^{i-1} X_{i} \cdot \omega\left(X_{1}, \ldots, \hat{X}_{i}, \ldots, X_{k+1}\right) \\
& +\sum_{i<j}(-1)^{i+j} \omega\left(\left[X_{i}, X_{j}\right], X_{1}, \ldots, \hat{X}_{i}, \ldots, \hat{X}_{j}, \ldots, X_{k+1}\right) .
\end{aligned}
$$

(a) Show that $d \omega$ is in fact a $k+1$ form.
(b) Show that the above definition of $d \omega$ coincides with the definition from the lecture.

Suggested Exercise 2. (0 points)
(a) Consider the 1-form $\alpha:=f^{1} d x+f^{2} d y+f^{3} d z$ on \mathbb{R}^{3}. Show that

$$
d \alpha=g^{1} d y \wedge d z+g^{2} d z \wedge d x+g^{3} d x \wedge d y
$$

where $\left(g^{1}, g^{2}, g^{3}\right)=\operatorname{curl}\left(f^{1}, f^{2}, f^{3}\right)$.
(b) Consider the 2-form $\omega=f^{1} d y \wedge d z+f^{2} d z \wedge d x+f^{3} d x \wedge d y$, on \mathbb{R}^{3}. Show that

$$
d \omega=\operatorname{div}\left(f^{1}, f^{2}, f^{3}\right) d x \wedge d y \wedge d z
$$

Suggested Exercise 3. (0 points)
Let $\omega \in \Omega^{1}\left(S^{2}\right)$ be a differential 1-form such that for any $\phi \in S O(3)$ it holds that $\phi^{*} \omega=\omega$. Show that $\omega=0$. Hint: Take a point $p \in S^{2}$ and look only at those $\phi \in S O(3)$ which fix p, and at the equation $\left(\phi^{*} \omega\right)_{p}=\omega_{p}$. How does $d \phi_{p}$ act on the tangent space $T_{p} S^{2}$?

Suggested Exercise 4. (0 points)
Let V be a vector space. The unique possibe contraction on $V \otimes V^{*}$ is $c_{1,1}: V \otimes V^{*} \rightarrow \mathbb{R}$. Show that $c_{1,1}$ is the trace when one views $V \otimes V^{*}$ as $\operatorname{Lin}(V, V)$.

Suggested Exercise 5. (0 points)
Let $f: M \rightarrow N$ be a smooth map and α and β be forms on N.
(a) $f^{*}(\alpha+\beta)=f^{*} \alpha+f^{*} \beta$.
(b) $f^{*}(\alpha \wedge \beta)=\left(f^{*} \alpha\right) \wedge\left(f^{*} \beta\right)$. Note that viewing smooth functions as 0-forms the above formula gives $f^{*}(g \alpha)=(g \circ f) f^{*} \alpha=\left(f^{*} g\right)\left(f^{*} \alpha\right)$ for any smooth function $g: N \rightarrow \mathbb{R}$.
(c) $g^{*}\left(f^{*} \alpha\right)=(f \circ g)^{*} \alpha$ for any smooth map $g: P \rightarrow M$.

